Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Engineering of a high-throughput screening system to identify cellulosic biomass, pretreatments, and enzyme formulations that enhance sugar release.

Identifieur interne : 003278 ( Main/Exploration ); précédent : 003277; suivant : 003279

Engineering of a high-throughput screening system to identify cellulosic biomass, pretreatments, and enzyme formulations that enhance sugar release.

Auteurs : Michael H. Studer [États-Unis] ; Jaclyn D. Demartini ; Simone Brethauer ; Heather L. Mckenzie ; Charles E. Wyman

Source :

RBID : pubmed:19731251

Descripteurs français

English descriptors

Abstract

The recalcitrance of cellulosic biomass, the only abundant, sustainable feedstock for making liquid fuels, is a primary obstacle to low cost biological processing, and development of more easily converted plants and more effective enzymes would be of great benefit. Because no single parameter describes recalcitrance, superior variants can only be identified by measuring sugar release from plants subjected to pretreatment and enzymatic hydrolysis. However, genetic modifications of plants coupled with molecular engineering of deconstruction proteins and definition of pretreatment conditions create a very large sample set, and previous methods for biomass pretreatment at elevated temperatures and pressures prevented use of a fully integrated high-throughput (HTP) screening pipeline. Herein, we report on the engineering of a novel HTP pretreatment system employing a 96 well-plate format that withstands extreme pretreatment conditions for rapid screening of biomass-enzyme-pretreatment combinations. This includes the development of new approaches to steam heating and water quenching the system that result in much faster heat up and cool down than previously possible and show consistent temperature histories across the multiwell plate. Coupled pretreatment and enzymatic hydrolysis performance of the well plate pretreatment system is shown to be consistent among the many wells in the device and also with performance of conventional tubular reactors.

DOI: 10.1002/bit.22527
PubMed: 19731251


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Engineering of a high-throughput screening system to identify cellulosic biomass, pretreatments, and enzyme formulations that enhance sugar release.</title>
<author>
<name sortKey="Studer, Michael H" sort="Studer, Michael H" uniqKey="Studer M" first="Michael H" last="Studer">Michael H. Studer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chemical and Environmental Engineering Department, Center for Environmental Research and Technology, University of California Riverside, 92507, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Chemical and Environmental Engineering Department, Center for Environmental Research and Technology, University of California Riverside, 92507</wicri:regionArea>
<wicri:noRegion>92507</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Demartini, Jaclyn D" sort="Demartini, Jaclyn D" uniqKey="Demartini J" first="Jaclyn D" last="Demartini">Jaclyn D. Demartini</name>
</author>
<author>
<name sortKey="Brethauer, Simone" sort="Brethauer, Simone" uniqKey="Brethauer S" first="Simone" last="Brethauer">Simone Brethauer</name>
</author>
<author>
<name sortKey="Mckenzie, Heather L" sort="Mckenzie, Heather L" uniqKey="Mckenzie H" first="Heather L" last="Mckenzie">Heather L. Mckenzie</name>
</author>
<author>
<name sortKey="Wyman, Charles E" sort="Wyman, Charles E" uniqKey="Wyman C" first="Charles E" last="Wyman">Charles E. Wyman</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:19731251</idno>
<idno type="pmid">19731251</idno>
<idno type="doi">10.1002/bit.22527</idno>
<idno type="wicri:Area/Main/Corpus">003466</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003466</idno>
<idno type="wicri:Area/Main/Curation">003466</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003466</idno>
<idno type="wicri:Area/Main/Exploration">003466</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Engineering of a high-throughput screening system to identify cellulosic biomass, pretreatments, and enzyme formulations that enhance sugar release.</title>
<author>
<name sortKey="Studer, Michael H" sort="Studer, Michael H" uniqKey="Studer M" first="Michael H" last="Studer">Michael H. Studer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chemical and Environmental Engineering Department, Center for Environmental Research and Technology, University of California Riverside, 92507, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Chemical and Environmental Engineering Department, Center for Environmental Research and Technology, University of California Riverside, 92507</wicri:regionArea>
<wicri:noRegion>92507</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Demartini, Jaclyn D" sort="Demartini, Jaclyn D" uniqKey="Demartini J" first="Jaclyn D" last="Demartini">Jaclyn D. Demartini</name>
</author>
<author>
<name sortKey="Brethauer, Simone" sort="Brethauer, Simone" uniqKey="Brethauer S" first="Simone" last="Brethauer">Simone Brethauer</name>
</author>
<author>
<name sortKey="Mckenzie, Heather L" sort="Mckenzie, Heather L" uniqKey="Mckenzie H" first="Heather L" last="Mckenzie">Heather L. Mckenzie</name>
</author>
<author>
<name sortKey="Wyman, Charles E" sort="Wyman, Charles E" uniqKey="Wyman C" first="Charles E" last="Wyman">Charles E. Wyman</name>
</author>
</analytic>
<series>
<title level="j">Biotechnology and bioengineering</title>
<idno type="eISSN">1097-0290</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biomass (MeSH)</term>
<term>Biotechnology (economics)</term>
<term>Biotechnology (instrumentation)</term>
<term>Biotechnology (methods)</term>
<term>Carbohydrates (analysis)</term>
<term>Cellulose (analysis)</term>
<term>Equipment Design (MeSH)</term>
<term>Hydrolysis (MeSH)</term>
<term>Populus (chemistry)</term>
<term>Temperature (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Biomasse (MeSH)</term>
<term>Biotechnologie (instrumentation)</term>
<term>Biotechnologie (méthodes)</term>
<term>Biotechnologie (économie)</term>
<term>Cellulose (analyse)</term>
<term>Conception d'appareillage (MeSH)</term>
<term>Glucides (analyse)</term>
<term>Hydrolyse (MeSH)</term>
<term>Populus (composition chimique)</term>
<term>Température (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Carbohydrates</term>
<term>Cellulose</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Cellulose</term>
<term>Glucides</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="economics" xml:lang="en">
<term>Biotechnology</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Biotechnology</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Biotechnology</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Biotechnologie</term>
</keywords>
<keywords scheme="MESH" qualifier="économie" xml:lang="fr">
<term>Biotechnologie</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>Equipment Design</term>
<term>Hydrolysis</term>
<term>Temperature</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biomasse</term>
<term>Conception d'appareillage</term>
<term>Hydrolyse</term>
<term>Température</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The recalcitrance of cellulosic biomass, the only abundant, sustainable feedstock for making liquid fuels, is a primary obstacle to low cost biological processing, and development of more easily converted plants and more effective enzymes would be of great benefit. Because no single parameter describes recalcitrance, superior variants can only be identified by measuring sugar release from plants subjected to pretreatment and enzymatic hydrolysis. However, genetic modifications of plants coupled with molecular engineering of deconstruction proteins and definition of pretreatment conditions create a very large sample set, and previous methods for biomass pretreatment at elevated temperatures and pressures prevented use of a fully integrated high-throughput (HTP) screening pipeline. Herein, we report on the engineering of a novel HTP pretreatment system employing a 96 well-plate format that withstands extreme pretreatment conditions for rapid screening of biomass-enzyme-pretreatment combinations. This includes the development of new approaches to steam heating and water quenching the system that result in much faster heat up and cool down than previously possible and show consistent temperature histories across the multiwell plate. Coupled pretreatment and enzymatic hydrolysis performance of the well plate pretreatment system is shown to be consistent among the many wells in the device and also with performance of conventional tubular reactors.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19731251</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>03</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2009</Year>
<Month>12</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1097-0290</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>105</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2010</Year>
<Month>Feb</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Biotechnology and bioengineering</Title>
<ISOAbbreviation>Biotechnol Bioeng</ISOAbbreviation>
</Journal>
<ArticleTitle>Engineering of a high-throughput screening system to identify cellulosic biomass, pretreatments, and enzyme formulations that enhance sugar release.</ArticleTitle>
<Pagination>
<MedlinePgn>231-8</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/bit.22527</ELocationID>
<Abstract>
<AbstractText>The recalcitrance of cellulosic biomass, the only abundant, sustainable feedstock for making liquid fuels, is a primary obstacle to low cost biological processing, and development of more easily converted plants and more effective enzymes would be of great benefit. Because no single parameter describes recalcitrance, superior variants can only be identified by measuring sugar release from plants subjected to pretreatment and enzymatic hydrolysis. However, genetic modifications of plants coupled with molecular engineering of deconstruction proteins and definition of pretreatment conditions create a very large sample set, and previous methods for biomass pretreatment at elevated temperatures and pressures prevented use of a fully integrated high-throughput (HTP) screening pipeline. Herein, we report on the engineering of a novel HTP pretreatment system employing a 96 well-plate format that withstands extreme pretreatment conditions for rapid screening of biomass-enzyme-pretreatment combinations. This includes the development of new approaches to steam heating and water quenching the system that result in much faster heat up and cool down than previously possible and show consistent temperature histories across the multiwell plate. Coupled pretreatment and enzymatic hydrolysis performance of the well plate pretreatment system is shown to be consistent among the many wells in the device and also with performance of conventional tubular reactors.</AbstractText>
<CopyrightInformation>2009 Wiley Periodicals, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Studer</LastName>
<ForeName>Michael H</ForeName>
<Initials>MH</Initials>
<AffiliationInfo>
<Affiliation>Chemical and Environmental Engineering Department, Center for Environmental Research and Technology, University of California Riverside, 92507, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>DeMartini</LastName>
<ForeName>Jaclyn D</ForeName>
<Initials>JD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Brethauer</LastName>
<ForeName>Simone</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>McKenzie</LastName>
<ForeName>Heather L</ForeName>
<Initials>HL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wyman</LastName>
<ForeName>Charles E</ForeName>
<Initials>CE</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biotechnol Bioeng</MedlineTA>
<NlmUniqueID>7502021</NlmUniqueID>
<ISSNLinking>0006-3592</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002241">Carbohydrates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9004-34-6</RegistryNumber>
<NameOfSubstance UI="D002482">Cellulose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="Y">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001709" MajorTopicYN="N">Biotechnology</DescriptorName>
<QualifierName UI="Q000191" MajorTopicYN="N">economics</QualifierName>
<QualifierName UI="Q000295" MajorTopicYN="Y">instrumentation</QualifierName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002241" MajorTopicYN="N">Carbohydrates</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002482" MajorTopicYN="N">Cellulose</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004867" MajorTopicYN="N">Equipment Design</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006868" MajorTopicYN="N">Hydrolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>9</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>9</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>3</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19731251</ArticleId>
<ArticleId IdType="doi">10.1002/bit.22527</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Brethauer, Simone" sort="Brethauer, Simone" uniqKey="Brethauer S" first="Simone" last="Brethauer">Simone Brethauer</name>
<name sortKey="Demartini, Jaclyn D" sort="Demartini, Jaclyn D" uniqKey="Demartini J" first="Jaclyn D" last="Demartini">Jaclyn D. Demartini</name>
<name sortKey="Mckenzie, Heather L" sort="Mckenzie, Heather L" uniqKey="Mckenzie H" first="Heather L" last="Mckenzie">Heather L. Mckenzie</name>
<name sortKey="Wyman, Charles E" sort="Wyman, Charles E" uniqKey="Wyman C" first="Charles E" last="Wyman">Charles E. Wyman</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Studer, Michael H" sort="Studer, Michael H" uniqKey="Studer M" first="Michael H" last="Studer">Michael H. Studer</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003278 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003278 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19731251
   |texte=   Engineering of a high-throughput screening system to identify cellulosic biomass, pretreatments, and enzyme formulations that enhance sugar release.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19731251" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020